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Optimization Perspective (Review)

• Recall: Our goal is to find model parameters 𝑤 that minimize the 
loss function 𝐿:

argmin𝑤 𝐿 𝑤, 𝐷

• We can do this using gradient descent.
• Vector notation:

𝑤 ← 𝑤 − 𝛼
𝜕𝐿 𝑤, 𝐷

𝜕𝑤
• Scalar notation:

∀𝑗, 𝑤𝑗 − 𝛼
𝜕𝐿 𝑤, 𝐷

𝜕𝑤𝑗
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Review

To train the model, we need the derivative of the loss function with respect to each weight.
How can we compute the derivative with respect to this weight in the model?

Answer: Automatic Differentiation!
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Automatic Differentiation for ML (Overview)

• First, select an implement a parametric model, 𝑓𝑤.
• Second, select and implement a loss function, 𝐿.
• Third, implement gradient descent using automatic differentiation 

to compute 𝜕𝐿 𝑤,𝐷

𝜕𝑤
.
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The remainder of this presentation covers:
20 Automatic Differentiation for ML.ipynb
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Gradient descent on the sample MSE for a linear 
parametric model (no basis) on GPA data.
• Define the model:

• Define the loss function:

• Create a new function that is the gradient of the loss function:
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• Initialize the weight vector
Any initialization is valid. Often 
weights are initialized to zero or 
random values (here samples 
from a standard normal 
distribution)
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Iteration 0, Loss: 15.686453929819447 
Iteration 10, Loss: 3.593373473015224 
Iteration 20, Loss: 1.611696934073126 
Iteration 30, Loss: 1.044454252510009 
Iteration 40, Loss: 0.8214814808118163 
Test MSE: 0.7355874502987186

This is the power of 
automatic differentiation: 
We only had to implement 
our loss function and 
parametric model. We did 
not implement or manually 
compute their derivatives!
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Mini-Batch Gradient Descent
• When the data set is large, computing the sample MSE (or 

gradient of the sample MSE) for the entire training set can take a 
very long time.
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Mini-Batch Gradient Descent

• Idea: Split the training data into mini-batches.
• Each mini-batch is a collection of several rows (training points).
• Each iteration of gradient descent can use a different mini-batch of the 

training data.
• The process of running gradient descent on all mini-batches one time 

is called an epoch.
• Each epoch corresponds to one pass over the entire data set, performing one 

gradient update for each mini-batch.
• Training typically involves running several epochs.
• Different splits of the data into mini-batches are typically used for each 

epoch.
• This can be achieved by shuffling the data between epochs.

• We typically define the size of each mini-batch, not the number of mini-
batches.
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• 43,303 points total
• 34,642 points for training
• Mini-batch size = 100

• This is a hyperparameter

•
34,862

100
= 349 mini-batches
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• 43,303 points total
• 34,642 points for training
• Mini-batch size = 100

• This is a hyperparameter

•
34,862

100
= 349 mini-batches

• 𝑖 ∈ 0, 100, 200, … , 34700, 34800
• The starting index of each mini-batch

Shuffle the training data to get 
different mini-batches each epoch.
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• 43,303 points total
• 34,642 points for training
• Mini-batch size = 100

• This is a hyperparameter

•
34,862

100
= 349 mini-batches

• 𝑖 ∈ 0, 100, 200, … , 34700, 34800
• The starting index of each mini-batch

• Most batches run from 𝑖 to 𝑖 + 100
• The last batch runs from 𝑖 to the last 

point, which may be before 𝑖 + 100.
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point, which may be before 𝑖 + 100.

• The inputs and outputs for the 
current batch.
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• Perform a gradient update using 
only the data from the current 
batch.
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• The inputs and outputs for the 
current batch.

• Perform a gradient update using 
only the data from the current 
batch.

• Print the loss every 10 epochs
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• 43,303 points total
• 34,642 points for training
• Mini-batch size = 100

• This is a hyperparameter

•
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100
= 349 mini-batches

• 𝑖 ∈ 0, 100, 200, … , 34700, 34800
• The starting index of each mini-batch

• Most batches run from 𝑖 to 𝑖 + 100
• The last batch runs from 𝑖 to the last 

point, which may be before 𝑖 + 100.

• The inputs and outputs for the 
current batch.

• Perform a gradient update using 
only the data from the current 
batch.

• Print the loss every 10 epochs

• Compute the loss on the test set 17



Mini-Batch Gradient Descent (Results)
Epoch 0, Loss: 0.5832311803176145
Epoch 10, Loss: 0.584201610532094 
Epoch 20, Loss: 0.5832333795591383 
Epoch 30, Loss: 0.5836298546523091 
Epoch 40, Loss: 0.5840496234285119 
Test MSE: 0.5892578927313206

Iteration 0, Loss: 15.686453929819447 
Iteration 10, Loss: 3.593373473015224 
Iteration 20, Loss: 1.611696934073126 
Iteration 30, Loss: 1.044454252510009 
Iteration 40, Loss: 0.8214814808118163 
Test MSE: 0.7355874502987186

Using Mini-BatchesWithout Mini-Batches

• Notice that the sample MSE reached lower values in fewer epochs when using mini-batches! 
• Mini-batch gradient descent tends to:

• A) Speed up gradient computations because it uses less data per update, allowing for more 
frequent updates. 

• B) Speed up the optimization process, achieving lower losses in fewer epochs
• The complete explanation for why mini-batches can lead to quicker and more efficient learning is 

complex and may be covered in COMPSCI 682, Neural Networks.
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End
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