COMPSCI 389
Introduction to Machine Learning

Automatic Differentiation for ML

Prof. Philip S. Thomas (pthomas@cs.umass.edu)



Optimization Perspective (Review)

* Recall: Our goal is to find model parameters w that minimize the
loss function L:
argmin,, L(w, D)
* We can do this using gradient descent.
* Vector notation:

dL(w, D)
W W —a
ow
e Scalar notation:
_ dL(w,D)
vy, w; —a




Review

Convolution Neural Network (CNN)

Input - Output
Pooling Pooling Pooling 22 —
S g Horse
[ S e X Zebra
o Vot PN
- T Dog
- || W Softh?x
Convolution Convolution\ Convolution — ‘ﬂléfjtr'\‘éat%?]"
+ + +
Kernel RelU RelU RelU Flatten
Layer
Fully
~ Feature Maps Connected-———
\ Layer
| .
Feature Extraction Classification Probabilistic
Distribution

To train the model, we need the derivative of the loss\function with respect to each weight.
How can we compute the derivative with respect to this weight in the model?

3
Answer: Automatic Differentiation!



Automatic Differentiation for ML (Overview)

* First, select an implement a parametric model, f,,,.
* Second, select and implement a loss function, L.

* Third, implement gradient descent using automatic differentiation

0L(w,D)
to compute ———.




The remainder of this presentation covers:
20 Automatic Differentiation for ML.1ipynb



Gradient descent on the sample MSE for a linear
parametric model (no basis) on GPA data.

 Define the model:

def linear _model(X, weights):
return np.dot (X, weights)

 Define the loss function:

def loss function(weights, X, y):
predictions = linear model(X, weights)
return np.mean((predictions - y)**2)

* Create a new function that is the gradient of the loss function:

grad _loss = grad(loss function) # Defaults to grad(loss_ function, ©)



def linear_model(X, weights):
return np.dot(X, weights)

def loss function(weights, X, y):
predictions = linear model(X, weights)
return np.mean((predictions - y)**2)

grad loss = grad(loss function) # Defaults to grad(loss_function, ©)

* Initialize the weight vector

Any initialization is valid. Often
num_weights = X_train.shape[1] weights are initialized to zero or
#weights = np.zeros((num weights, 1)) random values (here samples
weights = np.random.randn(num_weights, 1) fromastandard normal

distribution)



def linear model(X, weights):
return np.dot(X, weights)

def loss function(weights, X, y):
predictions = linear model(X, weights)
return np.mean((predictions - y)**2)

Iteration 0, Loss: 15.686453929819447

grad_loss = grad(loss_function) Iteration 10, Loss: 3.593373473015224
num_iterations = 50 Iteration 20, Loss: 1.611696934073126
learning rate = 0.05 Iteration 30, Loss: 1.044454252510009

Iteration 40, Loss: 0.8214814808118163
Test MSE: 0.7355874502987186

# Training loop
for iteration in range(num_iterations):

weights -= learning rate * grad loss(weights, X _train, y train) This is the power of
automatic differentiation:
# Print loss every 10 iterations We only had to implement
if iteration % 10 == 0O: our loss function and
current_loss = loss function(weights, X_train, y_train) parametric model. We did
print(f"Iteration {iteration}, Loss: {current_loss}") not implement or manually

compute their derivatives!

# Evaluate on test data
test loss = loss function(weights, X test, y test)
print(f"Test MSE: {test loss}") 8



Mini-Batch Gradient Descent

* When the data set is large, computing the sample MSE (or

gradient of the sample MSE) for the entire training set can take a
very long time.

@ chatcPT
GPT-4 has about 175 billion parameters, making it one of the largest language models in terms of

the number of trainable weights.

@> ChatGPT

GPT-4 was trained on about 45 terabytes of text data. The training duration for a single pass
through this data is not publicly detailed by OpenAl, but it typically takes several weeks to a few
months for models of this scale. Keep in mind that this duration is influenced by factors like the

complexity of the model, the efficiency of the algorithms, and the computational resources

available.

e . e ~T
|’ !
LI | | g J T




Mini-Batch Gradient Descent

* Idea: Split the training data into mini-batches.
* Each mini-batch is a collection of several rows (training points).

* Each iteration of gradient descent can use a different mini-batch of the
training data.

* The process of running gradient descent on all mini-batches one time
Is called an epoch.

* Each epoch corresponds to one pass over the entire data set, performing one
gradient update for each mini-batch.

* Training typically involves running several epochs.

. Differﬁant splits of the data into mini-batches are typically used for each
epocnh.
* This can be achieved by shuffling the data between epochs.

* We typically define the size of each mini-batch, not the number of mini-
batches.

10



* 43,303 points total
* 34,642 points for training
* Mini-batch size = 100

* Thisis a hyperparameter

. [34'862} — 349 mini-batches
100

num_epochs = 50
learning rate = ©.65
minibatch _size = 100

11



* 43,303 points total
* 34,642 points for training
* Mini-batch size = 100

* Thisis a hyperparameter

. [34’862} — 349 mini-batches
100

num_epochs = 50
learning rate = ©.65
minibatch _size = 100

Shuffle the training data to get
different mini-batches each epoch.

for epoch in range(num_epochs):
# Shuffle the training data
X_train_shuffled, y train_shuffled = shuffle(X_train, y_train)

# Loop over mini-batches

- i €{0,100,200,...,34700,34800} <
* The starting index of each mini-batch

for i in range(@, X_train.shape[©], minibatch_size):

12



* 43,303 points total Ll = e

learning rate = ©.65

* 34,642 points for training e
° Mini—batch Size =100 for epoch in range(num_epochs):
e This i h t # Shuffle the training data
IS IS @ hyperparameter X_train_shuffled, y train_shuffled = shuffle(X_train, y_train)
34,862 . .
+ [222| = 349 mini-batches -
100 # Loop over mini-batches

« { €{0,100,200,...,34700, 34800} for i in range(@, X_train.shape[@], minibatch_size):
' Thestaring ndexof each minFhaeh / end = min(i + minibatch_size, X _train_shuffled.shape[0]) #

e Most batchesrunfromitoi + 100

* The last batch runs from i to the last
point, which may be before i + 100.

13



* 43,303 points total Ll = e

learning rate = ©.65

* 34,642 points for training e
° Mini—batch Size =100 for epoch in range(num_epochs):
e This i h t # Shuffle the training data
IS IS @ hyperparameter X_train_shuffled, y train_shuffled = shuffle(X_train, y_train)
34,862 . .
+ [222| = 349 mini-batches -
100 # Loop over mini-batches

« { €{0,100,200,...,34700, 34800} for i in range(@, X_train.shape[@], minibatch_size):

end = min(i + minibatch_size, X _train_shuffled.shape[0]) #
_ _ X_batch = X _train_shuffled[i:end]
Most batches runfromitoi 4+ 100 y_batch = y_train_shuffled[i:end]

* The last batch runs from i to the last
point, which may be before i + 100.

* The starting index of each mini-batch

The inputs and outputs for the
current batch.

14



* 43,303 points total Ll = e

learning rate = ©.65

* 34,642 points for training e

o Mini—batch Size = 100 for epoch in range(num_epochs):

e This i h t # Shuffle the training data
IS IS @ hyperparameter X_train_shuffled, y train_shuffled = shuffle(X_train, y_train)
34,862 . .
+ [222| = 349 mini-batches

100 # Loop over mini-batches

i € {0,100, 200,...,34700,34800} for i in range(@, X_train.shape[@], minibatch_size):

end = min(i + minibatch_size, X _train_shuffled.shape[0]) #

* The starting index of each mini-batch

_ _ X_batch = X _train_shuffled[i:end]
* MOSt batCheS run from Lto 1l + 100 y_batch = y_tpaj_n_5hu-F-F]_ed[j_:end]
* The last batch runs from i to the last
point, which may be before i + 100. gradients = grad loss(weights, X batch, y batch)
weights -= learning_rate * gradients

The inputs and outputs for the
current batch.

Perform a gradient update using
only the data from the current
batch.

15



* 43,303 points total Ll = e

learning rate = ©.65

* 34,642 points for training e

o Mini—batch Size = 100 for epoch in range(num_epochs):

e This i h t # Shuffle the training data
IS IS @ hyperparameter X_train_shuffled, y train_shuffled = shuffle(X_train, y_train)
34,862 . .
+ [222| = 349 mini-batches

100 # Loop over mini-batches
« { €{0,100,200,...,34700, 34800} for i in range(@, X_train.shape[@], minibatch_size):
end = min(i + minibatch_size, X _train_shuffled.shape[0]) #
X_batch = X _train_shuffled[i:end]

* The starting index of each mini-batch

d MOSt batCheS run from l tO l + 100 y_batch = y_tpaj_n_5hu-F-F]_ed[j_:end]
e The last batch runs from i to the last
point, which may be before i + 100. gradients = grad loss(weights, X batch, y batch)

. weights -= learning rate * gradients
 The inputs and outputs for the z = g

current batch. # Print loss every 10 epochs

* Perform a gradient update using if epoch % 1@ == 0:

onl_y the data from the current current_loss = loss function(weights, X train, y_train)
batch print (f"Epoch {epoch}, Loss: {current_loss}")

* Printthe loss every 10 epochs

16



* 43,303 points total Ll = e

learning rate = ©.65

* 34,642 points for training e

o Mini—batch Size = 100 for epoch in range(num_epochs):

e This i h t # Shuffle the training data
IS IS @ hyperparameter X_train_shuffled, y train_shuffled = shuffle(X_train, y_train)
34,862 . .
+ [222| = 349 mini-batches

100 # Loop over mini-batches
« { €{0,100,200,...,34700, 34800} for i in range(@, X_train.shape[@], minibatch_size):
end = min(i + minibatch_size, X _train_shuffled.shape[0]) #
X_batch = X _train_shuffled[i:end]

* The starting index of each mini-batch

* MOSt batCheS run from l to l + 100 y_batch = y_tpaj_n_5hu-F-F]_ed[j_:end]
* The last batch runs from i to the last
point, which may be before i + 100. gradients = grad loss(weights, X batch, y batch)
weights -= learning_rate * gradients

* The inputs and outputs for the

current batch. # Print loss every 10 epochs

* Perform a gradient update using if epoch % 1@ == 0:
onl_y the data from the current current_loss = loss function(weights, X train, y_train)
batch print (f"Epoch {epoch}, Loss: {current_loss}")

* Printthe loss every 10 epochs # Evaluate on test data

test _loss = loss function(weights, X test, y test)
print(f"Test MSE: {test _loss}")

e Compute the loss on the test set +— 17



Mini-Batch Gradient Descent (Results)

Without Mini-Batches Using Mini-Batches
Iteration 0, Loss: 15.686453929819447 Epoch 0, Loss: 0.5832311803176145
Iteration 10, Loss: 3.593373473015224 Epoch 10, Loss: ©0.584201610532094
Iteration 20, Loss: 1.611696934073126 Epoch 20, Loss: 0.5832333795591383
Iteration 30, Loss: 1.044454252510009 Epoch 30, Loss: 0.5836298546523091
Iteration 40, Loss: 0.8214814808118163 Epoch 40, Loss: 0.5840496234285119
Test MSE: 0.7355874502987186 Test MSE: 0.5892578927313206

Notice that the sample MSE reached lower values in fewer epochs when using mini-batches!
Mini-batch gradient descent tends to:
* A)Speed up gradient computations because it uses less data per update, allowing for more
frequent updates.
* B) Speed up the optimization process, achieving lower losses in fewer epochs
The complete explanation for why mini-batches can lead to quicker and more efficient learning is
complex and may be covered in COMPSCI 682, Neural Networks.

18



Serating

Thank you.

Degginmenic




	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Optimization Perspective (Review)
	Slide 3: Review
	Slide 4: Automatic Differentiation for ML (Overview)
	Slide 5: The remainder of this presentation covers: 20 Automatic Differentiation for ML.ipynb
	Slide 6: Gradient descent on the sample MSE for a linear parametric model (no basis) on GPA data.
	Slide 7
	Slide 8
	Slide 9: Mini-Batch Gradient Descent
	Slide 10: Mini-Batch Gradient Descent
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Mini-Batch Gradient Descent (Results)
	Slide 19: End

